Edge-partitioning 3-edge-connected graphs into paths
نویسندگان
چکیده
We show that for every ℓ , there exists d such 3-edge-connected graph with minimum degree can be edge-partitioned into paths of length (provided its number edges is divisible by ). This improves a result asserting 24-edge-connectivity and high provides partition. best possible as 3-edge-connectivity cannot replaced 2-edge connectivity.
منابع مشابه
Partitioning edge-coloured complete graphs into monochromatic cycles and paths
A conjecture of Erdős, Gyárfás, and Pyber says that in any edge-colouring of a complete graph with r colours, it is possible to cover all the vertices with r vertexdisjoint monochromatic cycles. So far, this conjecture has been proven only for r = 2. In this paper we show that in fact this conjecture is false for all r ≥ 3. In contrast to this, we show that in any edge-colouring of a complete g...
متن کاملEdge Disjoint Paths in Moderately Connected Graphs
We study the Edge Disjoint Paths (EDP) problem in undirected graphs: Given a graph G with n nodes and a set T of pairs of terminals, connect as many terminal pairs as possible using paths that are mutually edge disjoint. This leads to a variety of classic NP-complete problems, for which approximability is not well understood. We show a polylogarithmic approximation algorithm for the undirected ...
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کاملPartitioning edge-2-colored graphs by monochromatic paths and cycles
We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...
متن کاملPartitioning 2-edge-colored graphs by monochromatic paths and cycles
We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2022
ISSN: ['0095-8956', '1096-0902']
DOI: https://doi.org/10.1016/j.jctb.2022.05.001